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Abstract
We study the complex-conjugation and flipping properties of the recently
discovered graded pseudo-Majorana (GPM) spinors in general d-dimensional
spacetime with the signature ((−)t , (+)s). We consider simple supergravity in
Euclidean eleven dimensions (E11D) as an example. We show that we can
formulate N = 1 GPM supergravity with 128 + 128 degrees of freedom in
E11D with no doubling of supersymmetries. Unlike the conventional
formulation with symplectic Sp(n) spinors, no doubling is needed for GPM
spinors. Similar properties are also found for N = 1 GPM supergravity in
Euclidean 4D.

PACS numbers: 04.20.Gz, 04.65.+e, 11.30.Pb, 12.60.Jv

1. Introduction

Supersymmetry or supergravity in Euclidean dimensions has drawn much attention recently.
For example, in the recent formulation of non-commutative N = 1/2 superspace [1] or
N = (1, 1) superspace [2], Euclidean spacetime is crucial for the θ coordinates to have
certain non-vanishing anti-commutator. Moreover, as explained in [2], it is necessary to use
‘pseudo-conjugation’ instead of ordinary conjugation in supersymmetric theories in Euclidean
spacetime. This recent development gives us a strong motivation of investigating supergravity
in diverse Euclidean dimensions, such as Euclidean eleven dimensions (E11D) or Euclidean
four dimensions (E4D).

In the conventional analysis of spinors in diverse dimensions [3–5], there exist only
symplectic pseudo-Majorana spinors in E11D1. This implies that the simplest (pseudo)
Majorana spinors in E11D have at least 32 = 2×16 components in the 2 of Sp(1). Therefore,
the number of supersymmetries doubles, so that the minimal number of supersymmetries is

1 In our present paper, we use the signature (+, +, · · · , +) as Euclidean 11D.
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N = 2 instead of N = 1 in E11D. This is problematic for the possible Euclidean version
of 11D supergravity [6], because according to [3], there is no simple N = 1 supersymmetry
with 128 + 128 degrees of freedom corresponding to the conventional N = 1 supergravity in
Minkowskian 11D (M11D) [6]2.

Independently of this issue, it has recently been pointed out [7] that by introducing the
new concept of ‘graded Majorana’ (GM) or ‘graded pseudo-Majorana’ (GPM) spinors with the
concept of ‘pseudo-conjugation’ we do not need to double the number of spinors. As a matter
of fact, the importance of pseudo-conjugation in Euclidean supersymmetry was first pointed
out back in 1980s [8]. We clarify this concept of GM or GPM related to pseudo-conjugation
by reviewing first the conventional formulation [3–5].

Consider any arbitrary spacetime dimensions d = t + s with the signature (η
00

, η
11

, . . . ,

η
t−1,t−1

, . . . , η
d−1,d−1

) = ((−)t , (+)s) = (−,−, . . . ,−︸ ︷︷ ︸
t

, +, +, . . . , +︸ ︷︷ ︸
s

), following the notation

in [4]. There are three matrices A,B and C in general d = t + s dimensions [3, 4]. The matrix
A is defined by the products of the γ -matrices γ0, γ1, . . . , γt−1 for time coordinates associated
with the Dirac conjugation by ψ̄ ≡ ψ †A. The matrix B is associated with the complex
conjugation of the γ -matrices as specified in (1.1c), while C is the charge conjugation matrix
associated with ψ̄ = ψT C for (pseudo) Majorana spinor ψ [4]. There are two parameters
ε = ±1 and η = ±1, associated with all of these relationships summarized as [4]3

ψ̄ ≡ ψ †A = εψT C, ψ∗ ≡ Bψ, (1.1a)

(γµ)† = (−1)tAγµA−1, A ≡ γ0γ1 · · · γt−1, (1.1b)

(γµ)∗ = ηBγµB−1, B∗B = εI, BT = εB, (1.1c)

(γµ)T = (−1)tηCγµC−1, C†C = I, (1.1d)

CT = εηt (−1)t (t+1)/2C, C ≡ BA. (1.1e)

In the conventional formulation [3, 4], it is clear that the case ε = −1 with

B∗B = −I (1.2)

has a problem, because (ψ∗)∗ = (Bψ)∗ = B∗ψ∗ = B∗Bψ = −ψ �⇒ (ψ∗)∗ = −ψ .
The conventional way to avoid this problem is to double the number of components of ψ by
introducing symplectic spinors [3–5]. In fact, by introducing ψi (i, j = 1, 2) in the 2 of Sp(1)

[3–5], its complex conjugation is

ψ∗i ≡ (ψi)
∗ = Bεijψj , (1.3)

so that we can show [(ψi)
∗]∗ = +ψi by

[(ψi)
∗]∗ = (Bεijψj )

∗ = B∗εij (ψj )
∗ = B∗εij (Bεjkψk) = B∗B

(−δi
k
)
ψk = +ψi, (1.4)

thanks to the properties of the Sp(1) metric εij ε
jk = −δi

k, (εij )∗ = εij = εij and (1.2).
However, the new discovery in [7] is that if we allow the so-called pseudo-conjugation

operator ♦ for GM or GPM spinor ψ satisfying (ψ♦)♦ = −ψ , we need no symplectic doubling,
because ψ♦ = Bψ leads to (ψ♦)♦ = (Bψ)♦ = B∗ψ♦ = B∗Bψ = −ψ :

ψ♦ ≡ Bψ �⇒ (ψ♦)♦ = −ψ. (1.5)

Compared with the conventional prescription [3, 4], GM or GPM spinors with the
♦-conjugations [7] are much simpler, with no need of symplectic doublings.

2 In our paper, M11D have the signature (+, −,−, · · · , −) as in [6].
3 There is a typographical error in equation (3) in [4]. The factor (−1) in there should be replaced by (−1)t .
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Table 1. GM and GPM spinors in diverse dimensions.

ε η s − t Spinors Pseudo-conjugations

−1 +1 4, 5, 6 (mod 8) GM ψ♦ = Bψ

−1 −1 2, 3, 4 (mod 8) GPM ψ♦ = Bψ

2. GM and GPM spinors in diverse dimensions

Before considering the special case of E11D, we first establish the general aspects of GM or
GPM spinors in arbitrary spacetime dimensions ∀d = t + s with the signature ((−)t , (+)s) [4],
using the general formulae (1.1). As has been mentioned, we need either GM or GPM spinors,
iff ε = −1. All these possible cases are given in table 1: this table is complementary to the
table in [4] for GM or GPM spinors.

The general complex-conjugation and flipping properties for GM or GPM spinors are

(ψ̃γ [n]χ)♦ = +ηn+t (ψ̃γ [n]χ), (2.1a)

(ψ̃γ [n]χ) = +ηn+t (−1)(n−t)(n−t−1)/2(χ̃γ [n]ψ). (2.1b)

Here our Dirac conjugation ψ̃ is defined by

ψ̃ ≡ (ψ♦)T A, ψ♦ = Bψ, (2.2)

where the conventional complex conjugation in ψ † ≡ (ψ∗)T is replaced by that with a
‘pseudo-conjugation’ (ψ♦)T [7], to be distinguished from the former. The γ [n] is for a totally
antisymmetric product of n γ -matrices, e.g., γ [3] is equivalent to γ µνρ . Equation (2.1b) is the
same as equation (6) in [4] for ε = −1, whenever GM or GPM spinors exist, because this
flipping property is common to graded and non-graded (pseudo) Majorana spinors.

Equation (2.1a) is confirmed as follows. First, the equivalence between ♦ and ∗-operations
on bosonic quantities [7] makes the first equality trivial. For the second equality, we need

A♦ = A∗ = ηtBAB−1, (γ [n])♦ = (γ [n])∗ = ηnBγ [n]B−1, (2.3a)

AT = (−1)t (t+1)/2ηtCAC−1, (BT )−1 = εAC−1, ψT = ψ̃A−1(B−1)T , (2.3b)

which are easily obtained from (1.1) or (2.2). Using (2.3), we confirm (2.1) as

(LHS of 2.1a) = (ψ̃γ [n]χ)♦ = [(ψ♦)T Aγ [n]χ ]♦ = −ψT A∗(γ [n])∗χ♦

= −[ψ̃A−1(εAC−1)](ηtBAB−1)(ηnBγ [n]B−1)(Bχ)

= −ηt+nε(ψ̃C−1BAγ [n]χ) = +ηt+n[ψ̃C−1(CA−1)Aγ [n]χ ]

= +ηn+t (ψ̃γ [n]χ) = (RHS of 2.1a). (2.4)

The most crucial relationship used is (1.2).
Note that equation (2.1) is general enough to be applied to ∀d = t + s, as long as

s − t = 2, . . . , 6 (mod 8) for ε = −1, when GM (η = +1) or GPM (η = −1) spinors exist.

3. N = 1 GPM supergravity in E11D

We are now ready to look into the special case of E11D, implying that s = 11, t = 0, s − t =
11 = 3 (mod 8) and ε = −1, η = −1, as in our table 1. In E11D, equation (1.1) is more

3
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specified as

(γµ)† = γµ, A = I, ψ̃ ≡ (ψ♦)T , ψ♦ = Bψ, (3.1a)

(γµ)∗ = (γµ)♦ = −BγµB−1, B = CA−1 = C, (BT )−1 = −C−1, (3.1b)

(γµ)T = −CγµC−1, CT = −C. (3.1c)

The condition t = 0 resulted in A = I . The most crucial lemmas are (2.1) now for
ε = −1, η = −1, t = 0:

(ψ̃γ [n]χ)♦ = +(−1)n(ψ̃γ [n]χ), (3.2a)

(ψ̃γ [n]χ) = (−1)n(n+1)/2(χ̃γ [n]ψ). (3.2b)

Therefore, the bilinears (ψ̃χ), i(ψ̃γ µχ), (ψ̃γ µνχ), i(ψ̃γ µνρχ), . . . , i(ψ̃γ [11]χ) are all real.
As careful readers may have noted, this property (3.2) is formally the same as that for

N = 1 supergravity in M11D [6]. This has a great advantage, because we can directly use
the results in M11D for our E11D, without further complications resulting from spinorial
differences. This is one of the most important consequences of using GPM spinors, indicating
the naturalness and validity of these spinors in E11D, which otherwise did not have such direct
correspondence with the conventional M11D [6].

In the light of aforementioned preliminaries, we can present the Lagrangian for N = 1
GPM supergravity action IE11D ≡ ∫

d11xLE11D in E11D:

e−1LE11D = −1

4
R(ω) − i

2

[
ψ̃µγ µνρDν

(
ω + ω̂

2

)
ψρ

]
− 1

48
(Fµνρσ )2

+
1

192
(ψ̃µγ [µγρστλγ

ν]ψν)(F
ρστλ + F̂ ρστλ) +

2

(144)2
e−1ε[4][4]′[3]F[4]F[4]′A[3].

(3.3)

All the relevant definitions are parallel to those in [6], such as

Dµ(ω)ψν ≡ ∂µψν +
1

4
ωµ

rs(γrsψν), (3.4a)

ωµ
rs ≡ ωµ

rs(e) + Kµ
rs, ω̂µ

rs ≡ ωµ
rs +

i

4
(ψ̃ργµ

rsρσ ψσ ), (3.4b)

Kµ
rs ≡ − i

4
(ψ̃ργµ

rsρσ ψσ ) − i(ψ̃µγ [rψs]) − i

2
(ψ̃rγµψs). (3.4c)

Our action IE11D is invariant under N = 1 GPM supersymmetry

δQeµ
m = −i(̃εγ mψµ), (3.5a)

δQψµ = +Dµ(ω̂)ε +
i

144

(
γµ

νρστ − 8δµ
νγ ρστ

)
εF̂νρστ , (3.5b)

δQAµνρ = +
3

2
(̃εγ[µνψρ]). (3.5c)

By definition, not only ψµ, but also ε are GPM spinors [7]. As is usual in supergravity [9], all
the hatted quantities are supercovariant, e.g., ω̂µ

rs in (3.4b), or

F̂µνρσ ≡ 4∂[µAνρσ ] − 3(ψ̃[µγνρψσ ]). (3.6)
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Despite the GPM spinors employed, other properties such as Fierz rearrangement formulae
remain the same as in M11D [6]. For example [6, 10]

1
8 (γ µρστλω)α(β|(γλω)|γ δ) − 1

8 (γλω)α(β|(γ µρστλω)|γ δ)

+ 1
4 (γ µρστλ)α(β|(γλ)|γ δ) − 1

4 (γλ)α(β|(γ µρστλ)|γ δ) + 4(γ [µρσ |)α(β|(γ |τ ])|γ δ) ≡ 0.

(3.7)

The closure of gauge algebra also holds as in the original supergravity in M11D [6], due to
the flipping property (3.2), which is formally the same as that in M11D [6].

4. N = 1 GPM supergravity in E4D

The next important supergravity theory is that in E4D, because of its direct relationship with
supergravity in Minkowskian 4D (M4D)4 [11]. The theory of N = 1 supergravity in E4D can
be obtained either by dimensional reduction [12], or by direct construction, as well. Here we
adopt the latter method.

Supergravity in so-called E4D has already been known implicitly for some time. For
example, in [9] the gamma matrix γ 4 ≡ iγ 0 has been used, with all the γ -matrices treated as
purely Hermitian matrices, as if we were in E4D (x1, x2, x3, x4) with x4 ≡ ix0. Also, recently
a part of the analysis for spinors in E4D has been performed in [7] in terms of GM or GPM
spinors. Additionally, it has also been pointed out in [13] that N = (0, 1/2) supergravity is
possible in terms of Weyl spinors in E4D, at the expense of Lorentz invariance. In any case,
only symplectic spinors have been known in ‘real’ E4D [3, 4]. Here, we apply the results in
[7] to N = 1 supergravity in E4D in terms of GPM spinors without symplectic doubling.

We now have s = 4, t = 0, s − t = 4 with ε = −1, η = ±1 in table 1. Similarly to
E11D, we have A = I ,5 and (1.1) is specified as

(γµ)† = γµ, A = I, ψ̃ ≡ (ψ♦)T , ψ♦ = Bψ, (4.1a)

(γµ)∗ = (γµ)♦ = ηBγµB−1, B = CA−1 = C, (BT )−1 = −C−1, (4.1b)

(γµ)T = ηCγµC−1, CT = −C. (4.1c)

Accordingly, equation (2.1) is more specified as

(ψ̃γ [n]χ)♦ = ηn(ψ̃γ [n]χ) =
{

(χ̃γ [n]ψ) (for η = +1),

(−1)n(χ̃γ [n]ψ) (for η = −1),
(4.2a)

(ψ̃γ [n]χ) = (−1)n(n−1)/2ηn(χ̃γ [n]ψ) =
{

(−1)n(n−1)/2(χ̃γ [n]ψ) (for η = +1),

(−1)n(n+1)/2(χ̃γ [n]ψ) (for η = −1).
(4.2b)

This implies that GPM spinors with η = −1 in E4D have the same complex-conjugation
and flipping properties as the conventional N = 1 Majorana spinors in M4D [11]. For example,
the closure of gauge algebra with the real translation parameter ξµ ≡ i(̃ε1γ

µε2) = −i(̃ε2γ
µε1)

holds only for η = −1. Therefore, we have in E4D formally the same Lagrangian for GPM
N = 1 supergravity as in M4D [11].

4 The ‘M4D’ here are with the signature (+, −,−, −).
5 Note that despite the similarity to [9], the latter used A = γ 4 �= I . In this sense, the spacetime used in [9] is
‘pseudo’-Euclidean 4D (PE4D) different from our presentation here.
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Our action IE4D ≡ ∫
d4xLE4D is now in terms of GPM gravitino ψµ for η = −1:

LE4D = −1

4
eR(ω) − i

2
e[ψ̃µγ µνρDν(ω)ψρ], (4.3)

invariant under N = 1 GPM supersymmetry

δQeµ
m = −i(̃εγ mψµ), δQψµ = +Dµ(ω̂)ε. (4.4)

Since the definitions of ω̂µ
rs , etc are parallel to the previous E11D case, we suppress such

redundancies. Also, the couplings of supergravity to other multiplets are parallel to the
corresponding M4D cases [11] that we do not write explicitly here.

5. Concluding remarks

In this paper, based on the formulation presented by [7], we have shown that PGM spinors
can be used to formulate N = 1 supergravity both in E11D and E4D, without conventional
Sp(1) symplectic spinors ψi . The GM or PGM has the property (ψ♦)♦ = −ψ compatible
with B∗B = εI = −I [3, 4] in spacetime dimensions with 2 � s − t � 6 (mod 8).

We next investigated complex conjugations and flipping properties of GM and GPM-
spinor bilinears in ∀d = t + s for the case ε = −1, as summarized in table 1. These are
practically very useful for constructing new supergravity theories in diverse dimensions.

As an example, we gave simple N = 1 GPM supergravity in E11D with 128 + 128
physical degrees of freedom, as opposed to the conventional analysis with symplectic doubling
[3–5]. Subsequently, we constructed N = 1 GPM supergravity in E4D without symplectic
doublings, as opposed to the conventional wisdom [3–5]. Even though its Lagrangian and
transformation rule are formally the same as N = 1 supergravity in M4D [11], we have
acquired conceptional progress, because we now have N = 1 simple supergravity in E4D in
terms of GPM spinors without symplectic doublings [3–5].

We have now three versions for possible spinors in ‘E11D’:

(i) Those in conventional N = 1 supergravity [6, 9] in ‘pseudo’-E11D (PE11D) by Wick
rotations [14].

(ii) ‘Conventional’ spinors with symplectic doublings [3, 4, 15, 16]
(iii) GPM spinors [7] in present N = 1 supergravity in this paper.

First, the version (i) is the conventional formulation in PE11D [9], obtained as analytic
continuation from M11D, with the prescriptions such as A = γ 11 �= I . This version has its
advantage that it is related to supergravity in M11D by analytic continuation or Wick rotations
[14]. This version (i) is also closely related to quantum field theory of supergravity in M11D
[6], because of analytic continuation from M11D. Second, the version (ii) with symplectic
doublings [3, 4] is the most ‘counter-intuitive’, because even the spinorial degrees of freedom
double, when comparing with the conventional M11D supergravity. On the other hand,
the version (iii) with GPM spinors with the same spinorial degrees of freedom looks more
advantageous than (ii), providing an alternative version to the version (i) in PE11D. Finally, the
version (iii) plays a crucial role, when investigating recently developed non-anti-commutative
supersymmetry or supergravity [1, 13].

Euclidean spacetime for (supersymmetric) field theories is of primary interest in the
context of path-integral approach to quantum field theory. Path integrals use the standard
complex conjugation on Grassmann algebra. The formulation in this paper is already in
Euclidean spacetime. A question arises as to the validity of this Euclidean field theory,
when analytically continued to Minkowski spacetime. We believe that this can be done

6
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consistently, once the relevant conjugation operator and other relevant operations are defined
on the Grassmann algebra.

There are at least three methods of achieving this goal. The first method is to construct the
relevant conjugation operator by hand. The second one is to define the conjugation operator
with respect to a continuous parameter as a generalized Wick rotation [16]. Choosing the
specific values of the parameter will then define the theory either in Euclidean or Minkowskian
space. The third method is to define the conjugation operator in terms of an external metric
gAB(θ) that depends on the parameter θ , such that with θ = 0 one gets the Minkowski theory
and with θ = π/2 one gets the Euclidean theory [17]. In our case, we need to use the
above-mentioned method(s) to construct the complex-conjugation operator necessary to go
from E11D to M11D and vice versa.

Admittedly, we have not performed any of these constructions in this paper, because
this formulation had recently been started mainly in the context of non-(anti)commutative
coordinates [1, 2]. We hope to address this problem in a future publication.

In any case, it is advantageous to have formulations within E11D directly, where the same
degrees of freedom are established as the corresponding M11D, also from the viewpoint of
quantum field theory. It is more likely that E11D theory with GPM spinors is closely related
to PE11D theory or M11D itself, maintaining the same degrees of freedom.
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